
International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 414
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Work Paper : Code Optimization using
Refactoring

Piyush Chandi
M.TECH(ITW),

University School of Information and Communication Technology,
Guru Gobind Singh Indraprashta University,Dwarka,

Delhi-110078
India

Abstract

Refactoring is a formal and mechanical process, used to modify existing code in such a way that it does indeed become 'better' while
preserving the program's intended functionality. In addition to improving a program's overall design, the refactoring process tends to yield
code which is far easier to maintain and extend in the long run.It is widely believed that refactoring improves software quality and developer
productivity. This paper explains the benefits of refactoring by applying combinations of refactoring methods on an unoptimized code and
identify which combination of refactoring methods results in better optimization of code. Further the paper discuses works done by various
people on refactoring, various code optimization techniques , classification of refactoring techniques based on functionality, code
optimization tools and benefits and challenges of refactoring. The paper discusses the results and conclusions are drawn on the basis of
results. The paper concludes with identification of future scope of work.

Introduction

Refactoring in common language is simply modifying the
code without changing its external behaviour. The changed
code is optimized code in terms of object oriented features
such as Encapsulation,Polymorphism,Inheritance etc or in
terms of performance such as Response time, Execution
time etc. As per Fowler[1],Patrick Cousat[2], Miryung
Kim[3] , Refactoring is divided into six main groups
depending upon functionality - :

 1) Composing Methods - It deals with problems related to
methods and parameters. It
includes methods such as Extract Method, Inline Method,
and Replace Parameter
with Method. Extract Method takes input as line of codes
and turns it into a method. Replace Parameter with
Method is used when data in one parameter is obtained by
making a request of an already known object. These type
or refactorings solve problems such as Duplicate code in
a single class, lengthy methods and long

2) Moving Features Between Objects- It is used for
improving the software design. It
includes methods such as Move Method and Extract Class.

Move Method is used when a particular method is used
more frequently in another class then in class in which is
defined. These type of refactorings solve issues related to
large classes and multi-level classes.

3) Organizing Data- It is used to simplify working with
data. It includes methods such as Replace Data Value
with Object and Encapsulate field. Replace Data Value with
Object method is used when the field needs additional data
. For Example, we have an string field called Telephone
number containing Telephone number of Employee as
string and telephone telephone needs special behavior for
formatting, extracting the area code etc. In order to
accommodate this type of requirement we turn data item
into object.

 4) Simplifying Conditional Expressions- It deals with
optimization and simplification
 of conditional expressions such as inner loops, for each
loops etc.

 5) Making Method Calls Simpler – It includes methods
such as Preserve Whole
 Object and Introduce Parameter Object. Preserve Whole
Object is used when instead of
 several parameters the whole object is passed as
parameter.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 415
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

6) Dealing with Generalization – It includes methods such
as Pull Up Field, Pull Up Method, Push Down Field and
Method and Extract Inetrface. Pull Method is used when
there are common fields in sub classes and the field is
moved to Super class . Pull Up Method is used when there
is common method in sub classes and the method is moved
to Super Class. Push Down Field and Method is used when
fields and methods are relevant only to some sub classes.
Extract Interface method is used when a classes having
methods or set of methods is to be used by another classes.

Literature Review

There are various definitions for Refactoring -:

Fowler[1] describes Refactoring as a noun is, “a change
made to the internal structure of software to make it easier
to understand and cheaper to modify without changing its
observable behaviour” . As a verb, to refactor is, “to
restructure software by applying a series of refactorings
without changing its observable behaviour”.

Software restructuring is defined by Opdyke [7] as, “the
modification of software to
make the software
a) easier to understand and to change or
b) less susceptible to error when future changes are made.

” Roberts D. Brant [8] gave a more formal definition of
refactoring is provided as a program transformation that
has a precondition and a post-condition that a program
must satisfy for the refactoring to be easily applied.

Following definitions also were given by developers for
refactoring as observed by Fowler[1] and Miryung Kim[3] -
:

“Rewriting code to make it better in some way.”

“Changing code to make it easier to maintain. Strictly
speaking, refactoring means that behavior does not change,
but realistically speaking, it usually is done while adding
features or fixing bugs.”

Fowler[1] and Miryung Kim[3] stated that Refactoring is
done due to four main reasons - :

1) Refactoring improves the design of existing software
2) Refactored software easier to understand
3) Bugs are easily located when code is refactored

4) refactoring emphasizes good design which speeds up
the development process.

 Further they stated that Refactoring can be done at any
stage whenever a code requires tidying up but some
common thumb rules for refactoring are - :

1) Refactor when adding functionality, to improve code
comprehension or to rearrange
 the code affected by new functionality.
2) Refactor when you need to fix a bug.
3) Refactor when code is reviewed.

There are many issues and challenges associated with
refactoring.

Opdyke[7] addresses the issue of refactoring being a
behaviour preserving operation. According to Opdyke[7],
the following seven properties must be fulfilled to define a
refactoring as being behaviour preserving. Firstly, all
classes must have at most one unique superclass. All classes
must have distinct class names and distinct member names.
Inherited member variables must not be redefined.
Signatures must be compatible in member function
redefinition. That is, when a subclass is redefining a
method found in a superclass, the signatures of the method
must be the same. There must be type-safe assignments,
meaning the values assigned to an attribute must be of the
same type as the attribute itself. Lastly, there must be
semantically equivalent references and operation.That is,
when given a set of inputs to a program and generating a
set of outputs from these inputs, after applying the
refactoring and running the program with the same set of
inputs,the outputs must be the same as the original set of
outputs.

The idea of behaviour preserving is defined differently by
Roberts D.Brant[8]. Eachprogram is thought to have a
specification for it and that specification is satisfied (or
unsatisfied) by a test suite. A refactoring is therefore
behaviour preserving if it satisfies the riginal test suite. If a
new component is added to the program, the program
must satisfy the original test suite plus any additional tests.
When satisfying the original test suite, one must recognize
that this is the conceptual original test suite that is satisfied.

In general, Fowler[1] noticed that refactoring in and of itself
is rather risky and has the potential to set back a
programmer days and even weeks . Consequently, the first
step in refactoring is providing a solid set of test cases to
run before and after the refactoring.

There are some studies done on Refactoring. Multi layer
refactoring has been applied on Windows softwares by a
centralized refactoring team which developed refactoring

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 416
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

tools and processes. The binary modules refactored by the
refactoring team had significant reduction in the number of
inter-module dependencies and the number of post-release
defects. Zimmermann and Nagappan[3] built a system
wide dependency graph of Windows Server 2003. The
quantitative analysis of Windows 7 version history shows
refactored modules experienced higher reduction in the
number of inter-module dependencies and post-release
defects than other changed modules. The study by
Zimmermann and Nagappan[3] is one of the first to show
that refactoring changes are likely to be relatively more
reliable than regular changes in a large system.

There are few Code Optimization techniques on which
studies have been conducted. They are - :

1) Profiling

In this technique , analysis of the relative execution time
spent in different parts of the Program is done because
generally spent most of the time in few parts of the code.
Optimization is done to only those part of the program
where time consumed is Maximuim.

2) Using a fast algorithm

Since to solve a program(say for example Sorting N
numbers), many algorithms exist in literature, therefore
we must use algorithms whose average running time is
less.

3) Local Optimizations

Local Optimization is achieved at sub-program or at
module level. It can be achieved by eliminating common
sub-expressions or by using registers for temporary results
or by using SHIFT and AND operators instead of addition
and multiplication.

4) Global Optimizations

It is performed with the help of data flow analysis and
split-lifetime analysis.Itincludes Code Motion, value
propagation and strength reductions.

5) Space Optimization

It reduces the size of object by using the techniques of
constant pooling and dead Code elimination.

6) Speed Optimization

It reduces the execution time of the program. Following
techniques are used to achieve Speed Optimization - :

 a) Loop unrolling - Full or partial transformation of a loop
into straight code.

 b) Loop blocking (tiling) - Minimizes cache misses by
replacing each array processing loop into two loops,
dividing the "iteration space" into smaller "blocks".

 c) Loop interchange -Change the nesting order of loops,
may make it possible to perform other transformations.

 d) Loop distribution - Replace a loop by two (or more)
equivalent loops.

 e) Loop fusion - Make one loop out of two (or more).

Proposed Work

The thesis proposes to understand the impact on code in
Visual Studio 2010(C#) on applying Extract Method and
Encapsulate Field together or Extract Method and Extract
Interface(in combination) together and identify which one
optimizes code in better way.

Extract Method is one of Refactoring method available in
Visual Studio 2010 which takes input as line of codes and
gives output as a method containing the line of codes. This
helps in increasing the modularity of code. Applying
Extract Method yields restructured code which is concise
and new methods are created based on code selection. New
methods created can be parameterized or non-
parameterized based on code selection. Return types of
new method and parameter types are automatically
decided by Refactoring tool thus there is no need to take
care of return types and parameter list.

Encapsulate Method is used to protect class field from
direct access by outside world.
Applying Encapsulate method yields encapsulated code.
The law of encapsulation begs us to define a type's field
data as private, while providing safe and controlled access
to the underlying value using .NET properties.

Extract Interface method is used generalize classes by
creating Interfaces contaning common functionalities which
are to be used across several classes. Applying Extract
Interface method allows developers to select a group of
existing type members to yield a new interface abstraction.
interfaces define a set of abstract members (properties,
methods, and events) that a given type may support. The
beauty of interfaces becomes clear when you understand
that types in completely different hierarchies can
implement the same interface. Given this, interfaces allow

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 417
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

us to obtain polymorphism across hierarchies, namespaces,
assemblies, and .NET programming languages.

Assumptions: For study and research purposes , we assume
our code is unoptimised such that all three methods - :
Extract Method, Extract Interface and Encapsulate Field can
be applicable to the code.

Algorithm I

1) Identify the unoptimised code.
2) Apply Extract method first preferably on code

pages(.cs files) to obtain partial optimization as
shown below

3) Next Apply Encapsulate field method on Class
files as shown below to achieve second level
optimization as shown below.

4) Use the optimized code for further programming

Algorithm II

1) Identify the unoptimised code.
2) Apply Extract method first preferably on code

pages(aspx.cs files) to obtain partial optimization
as shown below

3) Next Apply Extract Interface method on Class files
as shown below to achieve second level
optimization as shown below.

4) Use the optimized code for further programming.

Implementation

The three Refactoring Methods namely – Extract Method,
Encapsulate Field Method have been analyzed and studied
in stand alone fashion as well as in combination. All three
methods when applied in combination help in optimizing
the code in better way as compared to applying stand alone
methods on the code. These Refactoring methods are
available in Visual Studio 2010 only with C# language.
Detailed Implementation of each method in stand alone
fashion as well as in combination is shown below - :

1) Extract Method

This type of method helps in combing line of codes into a
single Method. It is useful for modularizing, readability
and understandability of code. It also improves
extensibility of code.

2) Encapsulate Field Method

This method is used when we have a public data member
of a class. Accessing public member directly by use of
objects is not a good way of programming. .NET
introduces a concept Propeties which allows the
programmer to set(writeonly) , get(readonly) or both set
and get the values of scalar variable. The advantage of
property is that we can define the property mode as
readonly or writeonly as per the requirement . Also we can
apply validation before setting the values

3) Extract Interface Method

Once comfort level of working with interface types is
achieved , it is very hard not to leverage their usefulness
whenever possible. In a nutshell, interfaces define a set of
abstract members (properties, methods, and events) that a
given type may support. If so, the implementing type
fleshes out the details as it sees fit. The beauty of interfaces
becomes clear when you understand that types in
completely different hierarchies can implement the same
interface. Given this, interfaces allow us to obtain
polymorphism across hierarchies, namespaces, assemblies,
and .NET programming languages.The Extract Interface
refactoring allows developers to select a group of existing
type members to yield a new interface abstraction.

4) Extract Method and Encapsulate Field

Applying these two methods simentaneously will yield
optimized code which is concise and encapsulated in
nature

5) Extract Method and Extract Interface

Applying these two methods simentaneously will yield
optimized code which is concise and extensible(reusable)
in nature.

Results and Dicussion

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 418
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Applying Extract Method and Encapsulate field together
will yield a optimized code which is concise , encapsulated
, object oriented in nature.The code can be well managed
because of the modularity. Extract Method has also an
advantage that it can also create a new method containing
parameters as per the selection of line of codes as shown in
the above chapter.

Applying Extract Method and Extract Interface together the
will refactored code will contain features of Encapsulation
as well as Polymorphism.

The goal is to achieve best possible level of Object
Orientation in the code.

Properties combine aspects of both fields and methods.
Properties have many uses: they can validate data before
allowing a change; they can transparently expose data on a
class where that data is actually retrieved from some other
source, such as a database; they can take an action when
data is changed, such as raising an event, or changing the
value of other fields. They can also be used for binding data
to controls. Use of properties in the code can enhance the
performance of code. It increases the reliability and well as
degree of object oriented in the code. Also validations or
data checkings can be applied in Properties.

By not using Extract Method and Encapsulate field
refactoring methods together the code will be without
Properties whose advantages are explained above. Also the
code would be unstructured and unoptimised in nature.

Applying Extract Method and Extract Interface together
will result in optimized code which is object oriented(with
the concept of inheritance implemented) , concise ,
centralized in nature.

The benefits of using interface based programming, are
outlined below - :

1) Enables developers to write loosely coupled systems.
With the help of interfaces, if required in future,
implementation can be simply changed thus making it easy
for the application to adapt to changes.

2) Developers’ roles are segregated. Developers writing
interface based components don’t have to worry about how
it’s being implemented. They only need to know how to
invoke functionalities available within it. UI developers can
start working on the UI without a concrete implementation
of the interface. At the same time, component developers
can concentrate in implementing the agreed interface
definition. This enables parallel development as one does

not have to depend on another’s work during the
development process.

3) As long as the interface definitions are not changed,
adding new features or re-implementing existing features
for various reasons like changes in business rules will not
break the existing system, rather makes it rich and efficient
over a period of time.

4) Generates maintainable and clean source code – UI
related code is separated from other parts of the system like
data access layer and business/domain related layer.
Unit testing that every developer should embrace can be
utilised. It can be performed independent of the UI or any
other layer consuming functionalities of the interface based
classes.

5) With Interfaces multiple inheritance can be
implemented in C#.

6) Code readability: An interface constitutes a declaration
about intentions. It defines a capability of the class, what
the class is capable of doing. If Isortable interface is
implemented then it is clearly stated that the class can be
sorted, same for IRenderable or IConvertible.

7) Code semantics: By providing interfaces and
implementing them the concepts are separated in a similar
way HTML and CSS does. A class is a concrete
implementation of an "object class" some way of
representing the reality by modeling general properties of
real life objects or concepts. An interface define a behavioral
model, a definition of what an object can do. Separating
those concepts keeps the semantics of the code more clear.
That way some methods may need an instance of an animal
class while other may accept whatever object you throw at
them as long as it supports "walking".

8) Code maintainability: Interfaces helps to reduce coupling
and therefore allowing develepers to easily interchange
implementations for the same concept without the
underlying code being affected. implementation of an
interface can be changed easily by defining a new class that
implements the interface. Compare that to replacing all
references from a particular class and changing it in other
classes.

Also a particular interface can be used by many classes.
Hence changes in Interface will automatically be reflected
in all inherited classes thus maintaining modularity and
reducing side effects of changing code. Also an interface
can be implemented implicity or explicity to class as shown
below. Explicit Interface Implementation is useful when
two interfaces have same functions(same signature,
parameter and type) as shown below. This is also another
advantage of using Extract Interface method.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 419
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig 5.1 Implementing Explicit Interface on a class

By not using Extract Method and Extract Interface
refactoring method together the code would lack the
feature of Interface based programming whose advantages
are discussed above and the code would be unmanaged
and unoptimised. Also it would be difficult to track
changes in the code because a single change in code would
result in making changes at many places and also increase
the effort of regression testing.

In both cases Extract Method only provides functionality of
grouping line of codes into a function thus making the code
cleaner, readable and maintainable.

 It is clear from above discussion that using Extract Method
and Extract Interface method together will be more
beneficial than using Extract Method and Encapsulate field
Method together because the former provides more options
to optimize the code. Also concepts of inheritance which
Extract Interface Method provides is a powerful attribute of
object oriented paradigm provides facility for code
reusability and code modularity. By using interfaces, code
can be centralized therfore errors due to changes in code
don’t propagate to other parts of code hence reducing the
need for regression testing. Interafce based programming is
very beneficial when a programmers are working in a team
because once an interface has been created it can be used by
other team members in other classes as per the
requirement.

Conclusion

 1) Code Optimization is a technique to optimize code
 with respect to various parameters such as space ,
 time, readability etc. Refactoring is one of the code
 Optimization technique in which code structure is
 changed but not its behaviour.

2) Refactoring is practice is still to gain popularity
among developers. Lack of Refactoring tools, Cost
Estimation, time constraints etc are some of the
factors that deters developers to follow
Refactoring.

3) Studies have confirmed that Refactoring reduces
production bugs and also improve software
design and also reduces inter module

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 420
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

dependencies.

 4) Refactoring sequential programs for parallelism is
 time-consuming and error- prone. It also leaves
 the code less readable and less portable

5) To implement Refactoring, the developer must
 have complete and indepth knowledge of
 Refactoring tool.

 6) Extract Interface Refactoring method is more
 useful then Encapsulate Field Methodology.

 7) Other Refactoring Methods such as Reorder
 parameters, Remove parameters etc when used
 can also optimize code

 Future Scope

1) Based on the study future work includes availability of
more refactoring methods which includes inclusion of
combination of Refactoring methods, Easier Code review
etc which may be able to solve the problem of readability
and portability as well.

2) We may also propose development of tools which may
identify unoptimised code and which particular
methodology will be suitable for the identified unoptimised
code.

3) Refactoring must be supported for other languages such
as VB,C++ etc. Currently Refactoring is only available for
C# language in Visual Studio.NET 2010.

4) Level of Code Optimization could be measured by
comparing and executing unoptimised code with
optimized code under standard and same conditions. This
is also one of area of research and development in
Refactroing tools and would be of great help to developers.
This when available will improve popularity and usability
 of Refactoring tools.

References

[1] M.Fowler : Refactoring:-Improving the Design of
Existing Code, Addison-Wesley Professional,2000.

[2] Patrick Cousot, Radhia Cousot, Francesco Logozzo
Michael Barnett: - An Abstract Interpretation Framework
for Refactoring with Application to Extract Methods with
Contracts,In VMCAI, 2011

[3] Miryung Kim, Thomas Zimmermann, Nachiappan
Nagappan: A Field Study of Refactoring Challenges and
Benefits, Technical Report, Microsoft Research, 2012

[4] T. Mens and T. Tourwe: A survey of software
Refactoring, IEEE Trans. Software Eng., 30(2):126–139, 2004.

[5] Tom Mens et al. “A survey of software refactoring”. TSE
30(2), 2004
[6] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim.
Template-based reconstruction of complex Refactorings,
IEEE International Conference on Software Maintenance,
2010

[7] Opdyke W.; Refactoring Object-Oriented
Frameworks,1992

[8] Roberts, Donald B.; Practical Analysis for Refactoring,
PhD Dissertation, Department of Computer Science,
University of Illinois at Urbana-Champaign, 1999

[9] Roberts, D., Brant, J., Johnson, R.; A Refactoring Tool for
Smalltalk, Theory and Practice of Object Systems, 3(4):253–
263, 1997. 1999

[10] Tokuda, Lance A.; Evolving Object-Oriented Designs
with Refactorings;,1999

[11] Kerievsky, Joshua; Refactoring to Patterns; Industrial
Logic; 1999

[12] C. Gorg and P. Weißgerber. Error detection by
refactoring reconstruction, In MSR ’05: Proceedings of the
2005 international workshop on Mining software
repositories, pages 1–5, New York, NY, USA, 2005.ACM
Press. 2005

[13] K. Beck. extreme Programming explained, embrace
change., Addison Wesley Upper Saddle River NJ, p.103-
115, 2000

[14] D. Dig and R. Johnson. The role of refactorings in API
evolution,2005

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 421
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

[15] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi.
Refactoring a legacy component for reuse in a
software product line ,2005

[16] Tokuda, Lance A.; Evolving Object-Oriented Designs
with Refactorings; The University of Texas at Austin, 1999

[17] F. Kjolstad, D. Dig, G. Acevedo, and M. Snir,
“Refactoring for immutability,”2010

[18] D. Dig, C. Radoi, M. Tarce, M. Minea, and R. Johnson,
“Refactoring for loop parallelism,”

[19] J. Wloka, M. Sridharan, and F. Tip, “Refactoring for
reentrancy,” 2009

[20] M. Mndez, J. Overbey, A. Garrido, F. Tinetti, and R.
Johnson, “A catalog and classification of fortran
refactorings , 2010

[21] E. Murphy-Hill, C. Parnin, and A. P. Black. How we
refactor, and how we know it,2009

[22]R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi.
Does refactoring improve
 reusability? , 2006

IJSER

http://www.ijser.org/

